Machine Learning and the Deuteron by Kebble and Rios and Variational Monte Carlo calculations of \( A\le 4 \) nuclei with an artificial neural-network correlator ansatz by Adams et al.
Adams et al: $$ \begin{align} H_{LO} &=-\sum_i \frac{{\vec{\nabla}_i^2}}{2m_N} +\sum_{i < j} {\left(C_1 + C_2\, \vec{\sigma_i}\cdot\vec{\sigma_j}\right) e^{-r_{ij}^2\Lambda^2 / 4 }} \nonumber\\ &+D_0 \sum_{i < j < k} \sum_{\text{cyc}} {e^{-\left(r_{ik}^2+r_{ij}^2\right)\Lambda^2/4}}\,, \tag{17} \end{align} $$
where \( m_N \) is the mass of the nucleon, \( \vec{\sigma_i} \) is the Pauli matrix acting on nucleon \( i \), and \( \sum_{\text{cyc}} \) stands for the cyclic permutation of \( i \), \( j \), and \( k \). The low-energy constants \( C_1 \) and \( C_2 \) are fit to the deuteron binding energy and to the neutron-neutron scattering length