Entanglement gates in trapped ions and more

Entanglement gates in trapped ions are produced by means of the Coulomb interaction, where shared motional modes of two or more ions, entangled to their internal states, used for transferring excitations between ion qubits. This has been experimentally demonstrated.

In photonic quantum computing schemes two-qubit entangling operations are realized by nonlinear interactions between two photons scattering from quantum dots, plasmonic nanowires, diamond vacancy centers and others embedded into waveguides. Two-qubit gates in semiconductor quantum dots are based on spin-spin exchange interactions or generated by coupling to a superconducting resonator via artificial spin-orbit interaction.