Selected Results from Zoufal et al.

Model Accuracy Recall Precision \( F_1 \)
Nearest Neighbours \( 0.94 \) \( 0.54 \) \( 0.72 \) \( 0.31 \)
RBF SVM \( 0.94 \) \( 0.42 \) \( 0.83 \) \( 0.28 \)
Gaussian Process \( 0.94 \) \( 0.46 \) \( 0.85 \) \( 0.30 \)
Gaussian Naive Bayes \( 0.91 \) \( 0.42 \) \( 0.56 \) \( 0.24 \)
Decision Tree \( 0.94 \) \( 0.42 \) \( 0.83 \) \( 0.28 \)
Random Forest \( 0.93 \) \( 0.29 \) \( 1.00 \) \( 0.22 \)
Multi-layer Perceptron \( 0.94 \) \( 0.38 \) \( 0.9 \) \( 0.27 \)
AdaBoost \( 0.94 \) \( 0.54 \) \( 0.81 \) \( 0.32 \)
QDA \( 0.92 \) \( 0.46 \) \( 0.61 \) \( 0.26 \)
Variational QBM \( \mathbf{0.95} \) \( \mathbf{0.63} \) \( \mathbf{0.83} \) \( \mathbf{0.36} \)

Performance measures for scikit-learn standard classifiers, as well as the trained QBM.