Defining
$$ C(\boldsymbol{X},\boldsymbol{\theta})=\frac{1}{n}\vert\vert \boldsymbol{y}-\boldsymbol{X}\boldsymbol{\theta}\vert\vert_2^2+\lambda\vert\vert \boldsymbol{\theta}\vert\vert_1, $$we have a new optimization equation
$$ {\displaystyle \min_{\boldsymbol{\theta}\in {\mathbb{R}}^{p}}}\frac{1}{n}\vert\vert \boldsymbol{y}-\boldsymbol{X}\boldsymbol{\theta}\vert\vert_2^2+\lambda\vert\vert \boldsymbol{\theta}\vert\vert_1 $$which leads to Lasso regression. Lasso stands for least absolute shrinkage and selection operator. Here we have defined the norm-1 as
$$ \vert\vert \boldsymbol{x}\vert\vert_1 = \sum_i \vert x_i\vert. $$