Efficient solutions of fermionic systems using artificial neural networks, Nordhagen et al, Frontiers in Physics 11, 2023

The Hamiltonian of the quantum dot is given by

$$ \hat{H} = \hat{H}_0 + \hat{V}, $$

where \( \hat{H}_0 \) is the many-body HO Hamiltonian, and \( \hat{V} \) is the inter-electron Coulomb interactions. In dimensionless units,

$$ \hat{V}= \sum_{i < j}^N \frac{1}{r_{ij}}, $$

with \( r_{ij}=\sqrt{\mathbf{r}_i^2 - \mathbf{r}_j^2} \).

Separable Hamiltonian with the relative motion part (\( r_{ij}=r \))

$$ \hat{H}_r=-\nabla^2_r + \frac{1}{4}\omega^2r^2+ \frac{1}{r}, $$

Analytical solutions in two and three dimensions (M. Taut 1993 and 1994).