More manipulations

For the second term, first note that $$ \begin{align} \sum_{p\neq q}a_p^{\dagger}a_q =\sum_{p < q}a_p^{\dagger}a_q+\sum_{q < p}a_p^{\dagger}a_q =\sum_{p < q}a_p^{\dagger}a_q+a_pa_q^{\dagger}, \tag{23} \end{align} $$ which we arrive at by swapping the indices \( p \) and \( q \) in the second sum and combining the sums. Applying the transformation $$ \begin{align} a_p^{\dagger}a_q+a_pa_q^{\dagger} &=\left(\frac{X_p-iY_p}{2}\right)\left(\frac{X_q+iY_q}{2}\right) \tag{24}\\ &+\left(\frac{X_p+iY_p}{2}\right)\left(\frac{X_q-iY_q}{2}\right) \tag{25}\\ &=\frac{1}{2}\left(X_pX_q+Y_pY_q\right). \tag{26} \end{align} $$